
 

Developing Microsoft Azure and Web Services 

Course Outline 

Module 1: Overview of service and cloud technologies 

This module provides an overview of service and cloud technologies using the Microsoft .NET Core 

and the Azure. The first lesson, “Key Components of Distributed Applications,” discusses 

characteristics that are common to distributed systems, regardless of the technologies they use. 

Lesson 2, “Data and Data Access Technologies” describes how data is used in distributed 

applications. Lesson 3, “Service Technologies,” discusses two of the most common protocols in 

distributed system and the .NET Core technologies used to develop services based on those 

protocols. Lesson 4, “Cloud Computing,” describes cloud computing and how it is implemented in 

Azure. 

Lessons 

 Key Components of Distributed Applications 

 Data and Data Access Technologies 

 Service Technologies 

 Cloud Computing 

 Manipulating Data 

Lab : Exploring the Work Environment 

 Creating an ASP.NET Core project 

 Create a simple Entity Framework model 

 Create a web API class 

 Deploy the web application to Azure 

After completing this module, students will be able to: 

 Explain services architecture and hosting environments 

 Explain cloud computing and the Microsoft Azure cloud platform 

 Explain data access strategies 

Module 2: Querying and Manipulating Data Using Entity Framework 

In this module, you will learn about the Entity Framework data model, and about how to create, 

read, update, and delete data. Entity Framework is a rich object-relational mapper, which provides a 

convenient and powerful application programming interface (API) to manipulate data. This module 

focuses on the Code First approach with Entity Framework. 

Lessons 

 ADO.NET Overview 

 Creating an Entity Data Model 



 

 Querying Data 

Lab : Creating a Data Access Layer using Entity Framework 

 Creating a data model 

 Query the Database 

Lab : Manipulating Data 

 Create repository methods 

 Test the model using SQL Server and SQLite 

After completing this module, students will be able to: 

 Describe basic objects in ADO.NET and explain how asynchronous operations work. 

 Create an Entity Framework Core data model. 

 Query data by using Entity Framework Core. 

 Insert, delete, and update entities by using Entity Framework Core. 

Module 3: Creating and Consuming ASP.NET Core Web APIs 

ASP.NET Core Web API provides a robust and modern framework for creating Hypertext Transfer 

Protocol (HTTP)-based services. In this module, you will be introduced to the HTTP-based services. 

You will learn how HTTP works and become familiar with HTTP messages, HTTP methods, status 

codes, and headers. You will also be introduced to the Representational State Transfer (REST) 

architectural style and hypermedia. You will learn how to create HTTP-based services by using 

ASP.NET Core Web API. You will also learn how to consume them from various clients. After Lesson 

3, in the lab "Creating an ASP.NET Core Web APIs", you will create a web API and consume it from a 

client. 

Lessons 

 HTTP Services 

 Creating an ASP.NET Core Web API 

 Consuming ASP.NET Core Web APIs 

 Handling HTTP Requests and Responses 

 Automatically Generating HTTP Requests and Responses 

Lab : Creating an ASP.NET Core Web API 

 Create a controller class 

 Use the API from a browser 

 Create a client 

After completing this module, students will be able to: 

 Design services by using the HTTP protocol. 



 

 Create services by using ASP.NET Core Web API. 

 Use the HttpRequest/IActionResult classes to control HTTP messages. 

 Consume ASP.NET Web API services. 

Module 4: Extending ASP.NET Core HTTP Services 

ASP.NET Core Web API provides a complete solution for building HTTP services, but services often 

have various needs and dependencies. In many cases, you will need to extend or customize the way 

ASP.NET Core Web API executes your service. Handling needs such as applying error handling and 

logging integrate with other components of your application and supporting other standards that 

are available in the HTTP world. Understanding the way ASP.NET Core Web API works is important 

when you extend ASP.NET Core Web API. The division of responsibilities between components and 

the order of execution are important when intervening with the way ASP.NET Core Web API 

executes. Finally, with ASP.NET Core Web API, you can also extend the way you interact with other 

parts of your system. With the dependency resolver mechanism, you can control how instances of 

your service are created, giving you complete control on managing dependencies of the services. 

Lessons 

 The ASP.NET Core Request Pipeline 

 Customizing Controllers and Actions 

 Injecting Dependencies into Controllers 

Lab : Customizing the ASP.NET Core Pipeline 

 Use Dependency Injection to Get a Repository Object 

 Create a Cache Filter 

 Create a Debugging Middleware 

After completing this module, students will be able to: 

 Extend the ASP.NET Web API request and response pipeline. 

 Customize Controllers and Actions. 

 Inject dependencies into ASP.NET Web API controllers. 

Module 5: Hosting Services On-Premises and in Azure 

In this module you will learn how to host your application on-premises and on Azure. You will also 

learn about Docker containers, and writing serverless applications with Azure functions. 

Lessons 

 Hosting Services on-premises 

 Hosting Services in Azure App Service 

 Packaging Services in Containers 

 Implementing Serverless Services 



 

Lab : Host an ASP.NET Core service in a Windows Service 

 Creating a new ASP.NET Core Application 

 Registering the Windows Service 

Lab : Host an ASP.NET Core Web API in an Azure Web App 

 Create a Web App in the Azure portal 

 Deploy an ASP.NET Core Web API to the Web App 

Lab : Host an ASP.NET Core service in Azure Container Instances 

 Publish the service to a Docker container 

 Host the service in Azure Container Instances 

Lab : Implement an Azure Function 

 Develop the service locally 

 Deploy the service to Azure Functions 

After completing this module, students will be able: 

 Host services on-premises by using Windows services and Microsoft Internet Information 

Services (IIS). 

 Host services in the Azure cloud environment by using Web Apps, Docker containers, and 

Azure Functions. 

 Package services in containers. 

 Implement serverless services. 

Module 6: Deploying and Managing Services 

In this module, you will learn about Web Deploy and how to deploy web applications by using Web 

Deploy in Visual Studio. You will also learn how to define continuous integration and continuous 

delivery pipelines and how to use Azure API Management and OpenAPI to provide robust, secure, 

and reliable APIs to your customers. 

Lessons 

 Web Deployment with Visual Studio 2017 

 Continuous Delivery with Visual Studio Team Services 

 Deploying Applications to Staging and Production Environments 

 Defining Service Interfaces with Azure API Management 

Lab : Deploying an ASP.NET Core web service on Linux 

 Publish the ASP.NET Core web service for Linux 

 Configure Nginx as a reverse proxy 

 



 

Lab : Deploying to Staging and Production 

 Deploy the application to production 

 Create a staging slot 

 Swap the Environments 

Lab : Publishing a Web API with Azure API Management 

 Creating an Azure API Management instance 

 Testing and managing the API 

After completing this module, students will be able to: 

 Explain Microsoft Internet Information Services (IIS) Web Deploy. 

 Explain Azure Web Apps deployment by using a Microsoft Visual Studio Team Services build 

pipeline. 

 Explain how to deploy web services to Azure Container Instances. 

 Explain how to define service interfaces by using API Management and Swagger. 

 Explain how to define policies by using API Management. 

 Explain defining service interfaces using Azure API Management and Swagger 

Module 7: Implementing Data Storage in Azure 

This module explains how to store and access data stored in Azure Storage. It also explains how to 

configure storage access rights for storage containers and content. 

Lessons 

 Choosing a Data Storage Mechanism 

 Accessing Data in Azure Storage 

 Working with Structured Data in Azure 

 Geographically Distributing Data with Azure CDN 

 Scaling with Out-of-Process Cache 

Lab : Storing Files in Azure Storage 

 Store publicly accessible files in Azure Blobs 

 Generate and store private files in Azure Blobs 

Lab : Querying Graph Data with CosmosDB 

 Create the CosmosDB graph database 

 Query the CosmosDB database 

Lab : Caching out-of-process with Azure Redis cache 

 Create the Azure Redis Cache service 



 

 Access the cache service from code 

 Test the application 

After completing this module, students will be able to: 

 Describe the architecture of Storage. 

 Control access to your Storage items. 

 Cache data using Azure Cache for Redis. 

 Distribute data by using Microsoft Azure Content Delivery Network. 

Module 8: Diagnostics and Monitoring 

This module explains how to monitor and log services, both on-premises and in Azure. 

Lessons 

 Logging in ASP.NET Core 

 Diagnostic Tools 

 Application Insights 

Lab : Monitoring ASP.NET Core with ETW and LTTng 

 Collect and view ETW events 

 Collect and view LTTng events 

Lab : Monitoring Azure Web Apps with Application Insights 

 Add the Application Insights SDK 

 Load test the web service 

 Analyze the performance results 

After completing this module, students will be able to: 

 Explain trace listeners 

 Explain performance counters 

 Explain ETW and LTTng events 

 Demonstrate using App Insights to monitor services 

Module 9: Securing services on-premises and in Microsoft Azure 

This module describes claim-based identity concepts and standards, and how to implement 

authentication and authorization by using Azure Active Directory to secure an ASP.NET Core Web 

API service. 

Lessons 

 Explaining Security Terminology 

 Securing Services with ASP.NET Core Identity 



 

 Securing Services with Azure Active Directory 

Lab : Using ASP.NET Core Identity 

 Add ASP.NET Core Identity middleware 

 Add authorization code 

 Run a client application to test the server 

Lab : Using Azure Active Directory with ASP.NET Core 

 Authenticate a client application using AAD B2C and MSAL.js 

Module 10: Scaling Services 

This module explains how to create scalable services and applications and scale them automatically 

using Web Apps load balancers, Azure Application Gateway and Azure Traffic Manager. 

Lessons 

 Introduction to Scalability 

 Automatic Scaling 

 Azure Application Gateway and Traffic Manager 

Lab : Load Balancing Azure Web Apps 

 Prepare the application for load-balancing 

 Test the load balancing with instance affinity 

 Test the load balancing without affinity 

Lab : Load Balancing with Azure Traffic Manager 

 Deploy an Azure Web App to multiple regions 

 Create an Azure Traffic Manager profile 

After completing this module, students will be able to: 

 Explain the need for scalability. 

 Describe how to use load balancing for scaling services. 

 Explain Azure Load Balancer, Azure Application Gateway, and Azure Traffic Manager. 

 


